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I. INTRODUCTION

Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the
electric field. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the
decomposition into matrices with special symmetries:

π = πc + πg + πd (1)

representing the Chew-Goldberger-Low (CGL) parallel anisotropy πc, the gyroviscosity πg, which is a completely

collisionless effect, and dissipation πd perpendicular to the magnetic field ~B. In the following, indices representing
particle species (e, i corresponding to electrons, ions) will be suppressed for clarity unless explicitly necessary.

The results are simplified by consideration of the lowest order in finite Larmor radius (FLR) effects, flute-reduction,
and in nonlinearity. The small parameter is δ ∼ k‖/k⊥ ∼ k‖ρ ∼ ω/Ω ∼ δn/n where Ω is the gyrofrequency and ρ is
the gyroradius, k refers to characteristic spatial wavenumbers and ω refers to characteristic frequencies. We will also
simplify by assuming low β = 2µ0p/B

2 � 1 and assume β ∼ O(δ), where p is the pressure and µ0 is the permeability

of free space. Furthermore, we simplify by assuming that the current µ0
~J = ~∇ × ~B is O(β) relative to the field.

This is certainly true for the perpendicular current, but is also a good approximation for the parallel current in most
situations of interest. Finally, the flute reduction consists of the assumption of incompressible perpendicular motion
~∇ · n~v⊥ ' 0 and that the electric field satisfies ~E⊥ = −~∇⊥φ.

To explain the importance of the results, we describe the case where the parallel flows are negligible. We will find
that the usual vorticity equation is modified by the CGL viscous force to the following form

$ = ~∇ · Ω−2
i Zie(Zieni~∇⊥φ+ ~∇⊥pi) (2)

(∂t + ~∇ · ~vE)$ = −~∇ · J‖b̂+ 2b̂× ~∇B · ~∇ (ptot + 5πci/6) /B2. (3)

The last term represents the modification by the CGL viscous force. We will find that a simple approximation for the
CGL anisotropy coefficients is

πcj = η0j~v⊥j · ~∇ logB (4)

where η0j ∝ pj/νeff,j and the effective collision frequency is νeff,j. This causes a damping of the vorticity proportional
to

ν$ = (kZvth/k⊥R)2/νeff (5)

where kZ = −ib̂× κ̂ · ~∇. Here, the velocity is defined to 1st order in the FLR expansion via

~v = v‖b̂+ ~v⊥ (6)

~v⊥ = ~vE + ~vpj (7)

~vE = ~E × b̂/B (8)

~vpj = b̂× ~∇pj/mΩ. (9)

and Ω = ZeB/m is the gyrofrequency.
The effective collision frequency νeff,j varies from the usual collision frequency νc in the collisional Pf̈ırsch-Shlüter

regime to ω2
t /νc in the low-collisionality banana regime. Here, we will focus on the collisional regime, but modifications

at low collisionality can be simply obtained with a suitable (typically Padé) approximation for 1/νeff .

II. REDUCED MHD EQUATIONS

The viscous force density ~Fπ = −~∇·π can be decomposed into parallel and perpendicular components. The parallel
component of the force is

Fπ‖ = −b̂ · ~∇ · π = π : ~∇b̂− ~∇ · ~π‖. (10)

Using the gyro-viscous cancellation, the parallel force balance equation is

∂tmnv‖ + ~∇ ·mn(v2
‖ + ~vEv‖)−mnv‖v · ~∇b̂ = −∂‖ptot + Fπ‖. (11)
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Here we have used Ohm’s law to eliminate the electric field. Since the electron viscous force is smaller than the ion
viscous force by (me/mi)

1/2 only the ion viscous force needs to be retained.
The perpendicular component of the force drives a polarization current via the divergence

~∇ · b̂
B
× ~Fπ = ~Fπ · ~∇×

b̂

B
− b̂

B
· ~∇× ~Fπ (12)

= ~Fπ · ~∇B−2 × ~B + ~Fπ · µ0
~J/B2 − b̂

B
· ~∇× ~Fπ. (13)

The second term is O(β) and can be neglected relative to the others.
The flute reduction implies that the perpendicular flow is almost incompressible. The electric potential can then

be determined by the curl of the perpendicular force balance equation. In order to eliminate the electric field from
this equation a sum over all charged species must be performed. Thus, the full definition of the vorticity involves a
sum over all species

$ = ~∇ ·
∑
j

Ω−2
j Zje(Zjeni~∇⊥φ+ ~∇⊥pj). (14)

Since each term is proportional to mj , the electron contribution can be neglected in this expression. To lowest order
the gyro-viscous cancellation between the diamagnetic flow and the gyro-viscous tensor implies that(

∂t + ~∇ · ~vE
)
$ = −~∇ · J‖b̂+ ~∇ · b̂

B
× ~F∗ (15)

where ~vE = ~E× ~B/B2 and, in this equation, ~F∗ is the sum of all forces aside from the ~J× ~B force and the gyro-viscous
force.

Again, Ohm’s law can be used to eliminate the electric field. Only the ion viscous forces needs to be retained
since the electron viscous forces are smaller by the factor (me/mi)

1/2. To lowest order, the contribution of the total

pressure is ~∇ · b̂B × ~∇ptot = 2b̂ × ~∇B · ~∇ptot/B2. (See Appendix A for how to simplify calculations involving the
magnetic field.) The goal of the next section is to calculate the contribution of the CGL viscous force.

III. CGL VISCOSITY

A. CGL Forces

The Chew-Goldberger-Low viscous tensor πc is “gyrotropic” meaning that it only allows anisotropy along the axis

of the magnetic field b̂. It is also traceless because the trace of the gyrotropic pressure tensor is absorbed in the
definition of the pressure p = (p‖ + 2p⊥)/3. Thus, the CGL tensor has the form

πc = πc

(
b̂b̂− I/3

)
. (16)

The CGL force is explicitly

~Fc = ~∇πc/3− ~∇ · πcb̂b̂ = ~∇πc/3− ~B · ~∇πcb̂/B (17)

= ~∇πc/3− ~B∂‖πc/B − πc~κ. (18)

The parallel component can be rewritten as

Fc‖ = −πc~∇ · b̂/3− ~∇ · 2πcb̂/3 (19)

= −B3/2∂‖2πc/3B
3/2. (20)

Vorticity is driven by

~∇ · b̂
B
× ~Fc = ~∇ · b̂

B
× ~∇πc

3
− ~∇ · b̂

B
× πc~κ (21)

= ~B ·
(
~∇πc

3
× ~∇B−2 − ~κ× ~∇ πc

B2

)
+
πc
B
b̂ · ~∇× ~κ+

µ0
~J

B
·
(
~∇πc

3
− πc~κ

)
. (22)
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Neglecting terms of order O(β) yields

~∇ · b̂
B
× ~Fc ' b̂ · ~∇ logB × ~∇5πc

3B
. (23)

B. Simplified Parallel Anisotropy

Here we follow the notation of Simakov and Catto [1], but use a slightly simplified anisotropy in order to simplify
the discussion. The changes to the results are discussed at the end of this section.

In the linear drift-MHD (1st order FLR) regime, the CGL stress tensor can be defined in terms of the following
rate of strain tensor formed from

α = ∂ivj +
2

5p
∂iqj (24)

W = α + αT (25)

W̄ = W − 2

3
~∇ · ~v − 4

15p
~∇ · ~q. (26)

The following definitions automatically generate a traceless form for the viscous tensor and are equivalent whether
one uses W̄ or W. To simplify notation below, we also define the vectors

~w = ~v +
2~q

5p
(27)

Each equation is given per species, but the species indices are suppressed for clarity. The Braginskii viscosity coeffi-
cients for each species are

η0,i = 0.96pi/νi (28)

η0,e = 0.73pe/νe. (29)

The parallel stress anisotropy is defined as

πc = −η0

(
3b̂b̂− I

)
: W/2 (30)

= −η0

(
3b̂ · ∂‖~v − ~∇ · ~v +

6

5p
b̂ · ∂‖~q −

2

5p
~∇ · ~q

)
(31)

= −η0

(
3∂‖v‖ +

6

5p
∂‖q‖ − ~∇ · ~v − 2

5p
~∇ · ~q − 3~w⊥ · ~κ

)
(32)

= −η0

(
2∂‖v‖ +

4

5p
∂‖q‖ + w‖∂‖ logB − ~∇ · ~v⊥ −

2

5p
~∇ · ~q⊥ − 3~w⊥ · ~κ

)
. (33)

The perpendicular flows are determined from the finite Larmor radius (FLR) expansion:

~v⊥ =
b̂

ZeB
×
(
n−1~∇p− Ze~E

)
(34)

2~q⊥
5p

=
b̂

ZeB
× ~∇T (35)

~w⊥ =
b̂

ZeB
×
(
n−1~∇p+ ~∇T − Ze~E

)
. (36)

Given the flute-reduced electrostatic approximation ~E⊥ ' −~∇⊥φ, the perpendicular divergence is

~∇ · ~v⊥ '
~B

Ze
·
(
~∇p× ~∇n−1B−2 − Ze~E × ~∇B−2

)
+
~v⊥ · µ0

~J

B
(37)

2~∇ · ~q⊥
5p

=
~B

Zep
· ~∇T × ~∇pB−2 +

2~q⊥ · µ0
~J

5pB
(38)

~∇ · ~v⊥ +
2~∇ · ~q⊥

5p
= ~B · (T ~∇ log n+ 2n∇T − Ze~E)× ~∇B−2 +

~w⊥ · µ0
~J

B
. (39)



5

The final terms involving J are O(β) and can be neglected relative to the others. The combination is approximately

~∇ · ~v⊥ +
2~∇ · ~q⊥

5p
− 3~w⊥ · ~κ ' −~v⊥ · ~∇ logB. (40)

To lowest order in δ, β the result is

πc = −η0

(
2B−1/2∂‖B

1/2v‖ +
4

5p
B−1/2∂‖B

1/2q‖ − ~v⊥ · ~∇ logB

)
. (41)

According to Ref. [1], there are some additional corrections to this form. The exact modifications can be found
in these references. For the perpendicular viscous force that enters the vorticity equation, this leads to a modified

v̄⊥ = v⊥ + ξb̂× ~∇T/mΩ where

ξi = 0.68 (42)

ξe = 0.98. (43)

Thus, the temperature gradient driven component of the drift is enhanced by the factor (1 + ξ).

C. Viscous Timescales

For simplicity, we now assume that the temperature is constant and seek to determine the viscous timescales. If
one were to consider parallel flow v‖ only, then the evolution to the state πc ∝ B−1/2 occurs on a consistently ordered

timescale (k‖vt)
2/ν ∼ O(δ). On the other hand, we can neglect the parallel velocity and consider the vorticity

equation alone with the anisotropy

πc = η0~v⊥ · ~∇ logB. (44)

This will only vanish iff the (ion) species are electrostatically confined so that Zen~E = ~∇p along the direction

orthogonal to ~∇B. The size of ~∇π/LB term is ∼ k2
⊥ρ

2ω2
t /νΩ where ωt = vt/LB . This should be compared to the

vorticity equation which is of order ∼ (k⊥ρ)2ω/Ω. Thus, as long as ω2
t /νΩ ∼ O(δ), the equations are consistently

ordered.

Appendix A: Magnetic Field Calculations

The magnetic field B and current µ0
~J = ~∇× ~B are related to the magnetic curvature ~κ via

~κ = b̂ · ~∇b̂ (A1)

µ0
~J × ~B = ~κB2 − ~∇⊥B2/2. (A2)

For an MHD equilibrium

~J × ~B = ~∇ptot (A3)

~κB2 = µ0
~∇ptot + ~∇⊥B2/2. (A4)

Clearly µ0J⊥/B ∼ O(β) and we will simplify by further assuming that µ0J‖/B ∼ O(β) as well.
We will need an expression for

~∇× b̂

B
= ~∇B−2 ×B +

µ0J

B2
(A5)

=
b̂

B
× (~∇ logB + ~κ) +

µ0J‖b̂

B2
. (A6)

For an MHD equilibrium

~∇× b̂

B
=

b̂

B
× (2~∇ logB +B−2~∇µ0ptot) +

µ0J‖b̂

B2
. (A7)
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Neglecting terms ∼ O(β) yields

~∇× b̂

B
' b̂

B
× 2~∇ logB ' b̂

B
× 2κ . (A8)

We will now show that b̂ · ~∇× ~κ ∼ O(β):

~κ ' ~∇⊥ logB (A9)

~∇× ~κ ' −~∇× b̂

B
∂‖B = −~∇

∂‖B

B2
× ~B − µ0

~J

B
∂‖ logB (A10)

' −~∇
∂‖B

B2
× ~B. (A11)

For an MHD equilibrium, the result is clearly O(β):

~∇× ~κ = −~∇
∂‖B

B2
× ~B − µ0

~J
∂‖B

B2
+ ~∇B−2 × ~∇µ0p (A12)

b̂ · ~∇× ~κ = −
µ0J‖

B
∂‖ logB + b̂ · ~∇B−2 × ~∇µ0p. (A13)
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